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1 Introduction

This vignette is intended for users who are familiar with concepts of likeli-
hood and with the related methods, such as information equality and BHHH
approximation, and with R language. The vignette focuses on maxLik usage
and does not explain the underlying mathematical concepts. Potential target
group includes researchers, graduate students, and industry practitioners who
want to apply their own custom maximum likelihood estimators. If you need
a refresher, consult the accompanied vignette �Getting started with maximum
likelihood and maxLik�.

The next section introduces the basic usage, including the maxLik function,
the main entry point for the package; gradients; di�erent optimizers; and how to
control the optimization behavior. These are topics that are hard to avoid when
working with applied ML estimation. Section 3 contains a selection of more
niche topics, including arguments to the log-likelihood function, other types of
optimization, testing condition numbers, and constrained optimization.

2 Basic usage

2.1 The maxLik function

The main entry point to maxLik functionality is the function of the same name,
maxLik. It is a wrapper around the underlying optimization algorithms that
ensures that the returned object is of the right class so one can use the conve-
nience methods, such as summary or logLik. It is important to keep in mind
that maxLik maximizes, not minimizes functions.

The basic usage of the function is very simple: just pass the log-likelihood
function (argument logLik) and the start value (argument start). Let us
demonstrate the basic usage by estimating the normal distribution parameters.
We create 100 standard normals, and estimate the best �t mean and standard
deviation. Instead of explicitly coding the formula for log-likelihood, we rely on
the R function dnorm instead (see Section 2.3 for a version that does not use
dnorm):

> x <- rnorm(100) # data. true mu = 0, sigma = 1

> loglik <- function(theta) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ sum(dnorm(x, mean=mu, sd=sigma, log=TRUE))
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+ }

> m <- maxLik(loglik, start=c(mu=1, sigma=2))

> # give start value somewhat off

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 7 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -144.6843

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu -0.01021 0.10282 -0.099 0.921

sigma 1.02830 0.07271 14.142 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

The algorithm converged in 7 iterations and one can check that the results are
equal to the sample mean and variance.1

This example demonstrates a number of key features of maxLik:

� The �rst argument of the likelihood must be the parameter vector. In this
example we de�ne it as θ = (µ, σ), and the �rst lines of loglik are used
to extract these values from the vector.

� The loglik function returns a single number, sum of individual log-
likelihood contributions of individual x components. (It may also return
the components individually, see BHHH method in Section 2.3 below.)

� Vector of start values must be of correct length. If its components are
named, those names are also displayed in summary (and for coef and
stdEr, see below).

� summary method displays a handy summary of the results, including the
convergence message, the estimated values, and statistical signi�cance.

� maxLik (and other auxiliary optimizers in the package) is a maximizer,
not minimizer.

As we did not specify the optimizer, maxLik picked Newton-Raphson by default,
and computed the necessary gradient and Hessian matrix numerically.

Besides summary, maxLik also contains a number of utility functions to
simplify handling of estimated models:

� coef extracts the model coe�cients:

> coef(m)

1Note that R function var returns the unbiased estimator by using denominator n− 1, the
ML estimator is biased with denominator n.
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mu sigma

-0.01020676 1.02829708

� stdEr returns the standard errors (by inverting Hessian):

> stdEr(m)

mu sigma

0.10282134 0.07271113

� Other functions include logLik to return the log-likelihood value, returnCode
and returnMessage to return the convergence code and message respec-
tively, and AIC to return Akaike's information criterion. See the respective
documentation for more information.

� One can also query the number of observations with nObs, but this requires
likelihood values to be supplied by observation (see the BHHH method in
Section 2.3 below).

2.2 Supplying analytic gradient

The simple example above worked fast and well. In particular, the numeric
gradient maxLik computed internally did not pose any problems. But users are
strongly advised to supply analytic gradient, or even better, both the gradient
and the Hessian matrix. More complex problems may be intractably slow,
converge to a sub-optimal solution, or not converge at all if numeric gradients
are noisy. Needless to say, unreliable Hessian also leads to unreliable inference.
Here we show how to supply gradient to the maxLik function.

We demonstrate this with a linear regression example. Non-linear optimizers
perform best in regions where level sets (contours) are roughly circular. In the
following example we use data in a very di�erent scale and create the log-
likelihood function with extremely elongated elliptical contours. Now Newton-
Raphson algorithm fails to converge when relying on numeric derivatives, but
works well with analytic gradient.

We combine three vectors, x1, x2 and x3, created at a very di�erent scale,
into the design matrix X =

(
x1 x2 x3

)
and compute y as

y = X

1
1
1

+ ϵ. (1)

We create x1, x2 and x3 as random normals with standard deviation of 1, 1000
and 107 respectively, and let ϵ be standard normal disturbance term:

> ## create 3 variables with very different scale

> X <- cbind(rnorm(100), rnorm(100, sd=1e3), rnorm(100, sd=1e7))

> ## note: correct coefficients are 1, 1, 1

> y <- X %*% c(1,1,1) + rnorm(100)

Next, we maximize negative of sum of squared errors SSE (remember, maxLik
is a maximizer not minimizer)

SSE (β) = (y − X · β)
T

(y − X · β) (2)

as this is equivalent to likelihood maximization:
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> negSSE <- function(beta) {

+ e <- y - X %*% beta

+ -crossprod(e)

+ # note '-': we are maximizing

+ }

> m <- maxLik(negSSE, start=c(0,0,0))

> # give start values a bit off

> summary(m, eigentol=1e-15)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 1 iterations

Return code 3: Last step could not find a value above the current.

Boundary of parameter space?

Consider switching to a more robust optimisation method temporarily.

Log-Likelihood: -9.793415e+15

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] -4.883e-01 3.451e-07 -1415237 <2e-16 ***

[2,] 9.966e+03 NaN NaN NaN

[3,] 9.767e-01 6.998e-09 139572406 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

As one can see, the algorithm gets stuck and fails to converge, the last param-
eter value is also way o� from the correct value (1, 1, 1). We have amended
summary with an extra argument, eigentol=1e-15. Otherwise maxLik refuses
to compute standard errors for near-singular Hessian, see the documentation
of summary.maxLik. It makes no di�erence right here but we want to keep it
consistent with the two following examples.

Now let's improve the model performance with analytic gradient. The gra-
dient of SSE can be written as

∂

∂β
SSE (β) = −2(y − Xβ)

T

X. (3)

maxLik uses numerator layout, i.e. the derivative of the scalar log-likelihood
with respect to the column vector of parameters is a row vector. We can code
the negative of it as

> grad <- function(beta) {

+ 2*t(y - X %*% beta) %*% X

+ }

We can add gradient to maxLik as an additional argument grad:

> m <- maxLik(negSSE, grad=grad, start=c(0,0,0))

> summary(m, eigentol=1e-15)
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--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 3 iterations

Return code 2: successive function values within tolerance limit (tol)

Log-Likelihood: -94.77403

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 1.089e+00 7.727e-02 1.409e+01 <2e-16 ***

[2,] 1.000e+00 7.121e-05 1.404e+04 <2e-16 ***

[3,] 1.000e+00 7.000e-09 1.429e+08 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

Now the algorithm converges rapidly, and the estimate is close to the true value.
Let us also add analytic Hessian, in this case it is

∂2

∂β ∂β
T SSE (β) = 2X

T

X (4)

and we implement the negative of it as

> hess <- function(beta) {

+ -2*crossprod(X)

+ }

Analytic Hessian matrix can be included with the argument hess, and now the
results are

> m <- maxLik(negSSE, grad=grad, hess=hess, start=c(0,0,0))

> summary(m, eigentol=1e-15)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 3 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -94.77403

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 1.089e+00 7.728e-02 1.409e+01 <2e-16 ***

[2,] 1.000e+00 7.121e-05 1.404e+04 <2e-16 ***

[3,] 1.000e+00 7.000e-09 1.429e+08 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

Analytic Hessian did not change the convergence behavior here. Note that
as the loss function is quadratic, Newton-Raphson should provide the correct
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solution in a single iteration only. However, this example has numerical issues
when inverting near-singular Hessian. One can easily check that when creating
covariates in a less extreme scale, then the convergence is indeed immediate.

While using separate arguments grad and hess is perhaps the most straight-
forward way to supply gradients, maxLik also supports gradient and Hessian
supplied as log-likelihood attributes. This is motivated by the fact that com-
puting gradient often involves a number of similar computations as computing
log-likelihood, and one may want to re-use some of the results. We demonstrate
this on the same example, by writing a version of log-likelihood function that
also computes the gradient and Hessian:

> negSSEA <- function(beta) {

+ ## negative SSE with attributes

+ e <- y - X %*% beta # we will re-use 'e'

+ sse <- -crossprod(e)

+ # note '-': we are maximizing

+ attr(sse, "gradient") <- 2*t(e) %*% X

+ attr(sse, "Hessian") <- -2*crossprod(X)

+ sse

+ }

> m <- maxLik(negSSEA, start=c(0,0,0))

> summary(m, eigentol=1e-15)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 3 iterations

Return code 2: successive function values within tolerance limit (tol)

Log-Likelihood: -94.77403

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

[1,] 1.089e+00 7.727e-02 1.409e+01 <2e-16 ***

[2,] 1.000e+00 7.121e-05 1.404e+04 <2e-16 ***

[3,] 1.000e+00 7.000e-09 1.429e+08 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

The log-likelihood with �gradient� and �Hessian� attributes, negSSEA, computes
log-likelihood as above, but also computes its gradient, and adds it as attribute
�gradient� to the log-likelihood. This gives a potential e�ciency gain as the
residuals e are re-used. maxLik checks the presence of the attribute, and if it is
there, it uses the provided gradient. In real applications the e�ciency gain will
depend on the amount of computations re-used, and the number of likelihood
calls versus gradient calls.

While analytic gradients are always helpful and often necessary, they may be
hard to derive and code. In order to help to derive and debug the analytic gradi-
ent, another provided function, compareDerivatives, takes the log-likelihood
function, analytic gradent, and compares the numeric and analytic gradient.
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As an example, we compare the log-likelihood and gradient functions we just
coded:

> compareDerivatives(negSSE, grad, t0=c(0,0,0))

-------- compare derivatives --------

Function value:

[1] -1.021262e+16

Dim of analytic gradient: 1 3

numeric : 1 3

t0

[,1] [,2] [,3]

[1,] 0 0 0

analytic gradient

[,1] [,2] [,3]

[1,] 35754234 43262096385 2.04252e+16

numeric gradient

[,1] [,2] [,3]

[1,] 3.8e+07 4.326e+10 2.04252e+16

(anal-num)/(0.5*(abs(anal)+abs(num)))

[,1] [,2] [,3]

[1,] -0.06089863 4.845894e-05 2.542083e-10

Max relative difference: 0.06089863

-------- END of compare derivatives --------

> # 't0' is the parameter value

The function prints the analytic gradient, numeric gradient, their relative dif-
ference, and the largest relative di�erence value (in absolute value). The latter
is handy in case of large gradient vectors where it may be hard to spot a lonely
component that is o�. In case of reasonably smooth functions, expect the rel-
ative di�erence to be smaller than 10−7. But in this example the numerical
gradients are clearly problematic.

compareDerivatives supports vector functions, so one can test analytic
Hessian in the same way by calling compareDerivatives with gradlik as the
�rst argument and the analytic hessian as the second argument.

2.3 Di�erent optimizers

By default, maxLik uses Newton-Raphson optimizer but one can easily swap
the optimizer by method argument. The supported optimizers include �NR�
for the default Newton-Raphson, �BFGS� for gradient-only Broyden-Fletcher-
Goldfarb-Shannon, �BHHH� for the information-equality based Berndt-Hall-
Hall-Hausman, and �NM� for gradient-less Nelder-Mead. Di�erent optimizers
may be based on a very di�erent approach, and certain concepts, such as itera-
tion, may mean quite di�erent things.

For instance, although Newton-Raphson is a simple, fast and intuitive method
that approximates the function with a parabola, it needs to know the Hessian
matrix (the second derivatives). This is usually even harder to program than
gradient, and even slower and more error-prone when computed numerically.
Let us replace NR with gradient-only BFGS method. It is a quasi-Newton
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method that computes its own internal approximation of the Hessian while re-
lying only on gradients. We re-use the data and log-likelihood function from
the �rst example where we estimated normal distribution parameters:

> m <- maxLik(loglik, start=c(mu=1, sigma=2),

+ method="BFGS")

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

BFGS maximization, 20 iterations

Return code 0: successful convergence

Log-Likelihood: -144.6843

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu -0.01021 0.10281 -0.099 0.921

sigma 1.02830 0.07271 14.143 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

One can see that the results were identical, but while NR converged in 7 itera-
tions, it took 20 iterations for BFGS. In this example the BFGS approximation
errors were larger than numeric errors when computing Hessian, but this may
not be true for more complex objective functions. In a similar fashion, one can
simply drop in most other provided optimizers.

One method that is very popular for ML estimation is BHHH. We discuss
it here at length because that method requires both log-likelihood and gradient
function to return a somewhat di�erent value. The essence of BHHH is informa-
tion equality, the fact that in case of log-likelihood function ℓ(θ), the expected
value of Hessian at the true parameter value θ0 can be expressed through the
expected value of the outer product of the gradient:

E

[
∂2l(θ)

∂θ ∂θ
T

]
θ=θ0

= −E

[
∂l(θ)

∂θ
T

∣∣∣∣
θ=θ0

· ∂l(θ)
∂θ

∣∣∣∣
θ=θ0

]
. (5)

Hence we can approximate Hessian by the average outer product of the gradient.
Obviously, this is only an approximation, and it is less correct when we are far
from the true value θ0. Note also that when approximating expected value with
average we rely on the assumption that the observations are independent. This
may not be true for certain type of data, such as time series.

However, in order to compute the average outer product, we need to compute
gradient by observation. Hence it is not enough to just return a single gradient
vector, we have to compute a matrix where rows correspond to individual data
points and columns to the gradient components.

We demonstrate BHHH method by replicating the normal distribution ex-
ample from above. Remember, the normal probability density is

f(x;µ, σ) =
1√
2π

1

σ
e
−
1

2

(x− µ)2

σ2 . (6)
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and hence the log-likelihood contribution of x is

ℓ(µ, σ;x) = − log
√
2π − log σ − 1

2

(x− µ)2

σ2
(7)

and its gradient

∂

∂µ
ℓ(µ, σ;x) =

1

σ2
(x− µ)

∂

∂σ
ℓ(µ, σ;x) = − 1

σ
+

1

σ2
(x− µ)2.

(8)

We can code these two functions as

> loglik <- function(theta) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ N <- length(x)

+ -N*log(sqrt(2*pi)) - N*log(sigma) - sum(0.5*(x - mu)^2/sigma^2)

+ # sum over observations

+ }

> gradlikB <- function(theta) {

+ ## BHHH-compatible gradient

+ mu <- theta[1]

+ sigma <- theta[2]

+ N <- length(x) # number of observations

+ gradient <- matrix(0, N, 2) # gradient is matrix:

+ # N datapoints (rows), 2 components

+ gradient[, 1] <- (x - mu)/sigma^2

+ # first column: derivative wrt mu

+ gradient[, 2] <- -1/sigma + (x - mu)^2/sigma^3

+ # second column: derivative wrt sigma

+ gradient

+ }

Note that in this case we do not sum over the individual values in the gradient
function (but we still do in log-likelihood). Instead, we �ll the rows of the N ×2
gradient matrix with the values observation-wise.

The results are similar to what we got above and the convergence speed is
in-between that of Newton-Raphson and BFGS:

> m <- maxLik(loglik, gradlikB, start=c(mu=1, sigma=2),

+ method="BHHH")

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

BHHH maximisation, 16 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -144.6843

2 free parameters

Estimates:
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Estimate Std. error t value Pr(> t)

mu -0.01006 0.11046 -0.091 0.927

sigma 1.02816 0.08615 11.934 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

In case we do not have time and energy to code the analytic gradient, we
can let maxLik compute the numeric one for BHHH too. In this case we have
to supply the log-likelihood by observation. This essentially means we remove
summing from the original likelihood function:

> loglikB <- function(theta) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ -log(sqrt(2*pi)) - log(sigma) - 0.5*(x - mu)^2/sigma^2

+ # no summing here

+ # also no 'N*' terms as we work by

+ # individual observations

+ }

> m <- maxLik(loglikB, start=c(mu=1, sigma=2),

+ method="BHHH")

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

BHHH maximisation, 16 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -144.6843

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu -0.01006 0.11046 -0.091 0.927

sigma 1.02816 0.08615 11.934 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

Besides of relying on information equality, BHHH is essentially the same
algorithm as NR. As the Hessian is just approximated, its is converging at
a slower pace than NR with analytic Hessian. But when relying on numeric
derivatives only, BHHH may be more reliable.

For convenience, the other methods also support observation-wise gradients
and log-likelihood values, those numbers are just summed internally. So one
can just code the problem in an BHHH-compatible manner and use it for all
supported optimizers.

maxLik package also includes stochastic gradient ascent optimizer. As that
method is rarely used for ML estimation, it cannot be supplied through the
�method� argument. Consult the separate vignette �Stochastic gradient ascent
in maxLik�.
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2.4 Control options

maxLik supports a number of control options, most of which can be supplied
through control=list(...) method. Some of the most important options in-
clude printLevel to control debugging information, iterLim to control the
maximum number of iterations, and various tol-parameters to control the con-
vergence tolerances. For instance, we can limit the iterations to two, while also
printing out the parameter estimates at each step. We use the previous example
with BHHH optimizer:

> m <- maxLik(loglikB, start=c(mu=1, sigma=2),

+ method="BHHH",

+ control=list(printLevel=3, iterlim=2))

Initial function value: -187.1825

Initial gradient value:

mu sigma

-25.25517 -24.02609

----- Initial parameters: -----

fcn value: -187.1825

parameter initial gradient free

mu 1 -25.25517 1

sigma 2 -24.02609 1

Condition number of the (active) hessian: 1.213316

function value difference -2598.628 -> step 0.5

-----Iteration 1 -----

lambda 0 step 0.5 fcn value: -145.45843547

amount new param new gradient active

mu 1.805752 0.09712381 -9.103843 1

sigma 1.828402 1.08579876 -8.596451 1

Condition number of the hessian: 2.053022

-----Iteration 2 -----

lambda 0 step 1 fcn value: -144.69018329

amount new param new gradient active

mu 0.10199838 -0.004874569 -0.5111141 1

sigma 0.06440369 1.021395073 1.3303155 1

Condition number of the hessian: 3.15706

--------------

Iteration limit exceeded (iterlim)

2 iterations

estimate: -0.004874569 1.021395

Function value: -144.6902

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

BHHH maximisation, 2 iterations

Return code 4: Iteration limit exceeded (iterlim)

Log-Likelihood: -144.6902

2 free parameters
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Estimates:

Estimate Std. error t value Pr(> t)

mu -0.004875 0.108699 -0.045 0.964

sigma 1.021395 0.084457 12.094 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

The �rst option, printLevel=3, make maxLik to print out parameters, gradi-
ent a few other bits of information at every step. Larger levels output more
information, printlevel 1 only prints the �rst and last parameter values. The
output from maxLik-implemented optimizers is fairly consistent, but methods
that call optimizers in other packages, such as BFGS, may output debugging
information in a quite di�erent way. The second option, iterLim=2 stops the
algorithm after two iterations. It returns with code 4: iteration limit exceeded.

Other sets of handy options are the convergence tolerances. There are three
convergence tolerances:

tol This measures the absolute convergence tolerance. Stop if successive func-
tion evaluations di�er by less than tol (default 10−8).

reltol This is somewhat similar to tol, but relative to the function value. Stop
if successive function evaluations di�er by less than reltol · (ℓ(θ) + reltol)
(default sqrt(.Machine[["double.eps"]]), may be approximately 1e-08
on a modern computer).

gradtol stop if the (Euclidean) norm of the gradient is smaller than this value
(default 10−6).

Default tolerance values are typically good enough, but in certain cases one may
want to adjust these. For instance, in case of function values are very large, one
may rely only on tolerance, and ignore relative tolerance and gradient tolerance
criteria. A simple way to achieve this is to set both reltol and gradtol to zero.
In that case these two conditions are never satis�ed and the algorithm stops
only when the absolute convergence criterion is ful�lled. For instance, in the
previous case we get:

> m <- maxLik(loglikB, start=c(mu=1, sigma=2),

+ method="BHHH",

+ control=list(reltol=0, gradtol=0))

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

BHHH maximisation, 26 iterations

Return code 2: successive function values within tolerance limit (tol)

Log-Likelihood: -144.6843

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu -0.01020 0.11050 -0.092 0.926
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sigma 1.02829 0.08619 11.931 <2e-16 ***

---

Signif. codes:

0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

When comparing the result with that on Page 9 we can see that the optimizer
now needs more iterations and it stops with a return code that is related to
tolerance, not relative tolerance.

Note that BFGS and other optimizers that are based on the stats::optim
does not report the convergence results in a similar way as BHHH and NR,
the algorithms provided by the maxLik package. Instead of tolerance limits or
gradient close to zero message, we hear about �successful convergence�. Stochas-
tic gradient ascent relies on completely di�erent convergence criteria. See the
dedicated vignette �Stochastic Gradient Ascent in maxLik�.

3 Advanced usage

This section describes more advanced and less frequently used aspects of maxLik.

3.1 Additional arguments to the log-likelihood function

maxLik expects the �rst argument of log-likelihood function to be the parameter
vector. But the function may have more arguments. Those can be passed as
additional named arguments to maxLik function. For instance, let's change
the log-likelihood function in a way that it expects data x to be passed as an
argument x. Now we have to call maxLik with an additional argument x=...:

> loglik <- function(theta, x) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ sum(dnorm(x, mean=mu, sd=sigma, log=TRUE))

+ }

> m <- maxLik(loglik, start=c(mu=1, sigma=2), x=x)

> # named argument 'x' will be passed

> # to loglik

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 7 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -144.6843

2 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu -0.01021 0.10282 -0.099 0.921

sigma 1.02830 0.07271 14.142 <2e-16 ***

---

Signif. codes:
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0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

--------------------------------------------

This approach only works if the argument names do not overlap with maxLik's
arguments' names. If that happens, it prints an informative error message.

3.2 Maximizing other functions

maxLik function is basically a wrapper around a number of maximization algo-
rithms, and a set of likelihood-related methods, such as standard errors. How-
ever, from time-to-time we need to optimize other functions where inverting the
Hessian to compute standard errors is not applicable. In such cases one can call
the included optimizers directly, using the form maxXXX where XXX stands for
the name of the method, e.g. maxNR for Newton-Rapshon (method="NR") and
maxBFGS for BFGS. There is also maxBHHH although the information equality�
based BHHH is not correct if we do not work with log-likelihood functions. The
arguments for maxXXX-functions are largely similar to those for maxLik, the �rst
argument is the function, and one also has to supply start values.

Let us demonstrate this functionality by optimizing 2-dimensional bell curve,

f(x, y) = e−x2−y2

. (9)

We code this function and just call maxBFGS on it:

> f <- function(theta) {

+ x <- theta[1]

+ y <- theta[2]

+ exp(-x^2 - y^2)

+ # optimum at (0, 0)

+ }

> m <- maxBFGS(f, start=c(1,1))

> # give start value a bit off

> summary(m)

--------------------------------------------

BFGS maximization

Number of iterations: 9

Return code: 0

successful convergence

Function value: 1

Estimates:

estimate gradient

[1,] -1.212621e-09 2.442491e-09

[2,] -1.212621e-09 2.442491e-09

--------------------------------------------

Note that the summary output is slightly di�erent: it reports the parameter
and gradient value, appropriate for a task that is not likelihood optimization.
Behind the scenes, this is because the maxXXX-functions return an object of
maxim-class, not maxLik -class.
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3.3 Testing condition numbers

Analytic gradient we demonstrated in Section 2.2 helps to avoid numerical prob-
lems. But not all problems can or should be solved by analytic gradients. For
instance, multicollinearity should be addressed on data or model level. maxLik
provides a helper function, condiNumbers, to detect such problems. We demon-
strate this by creating a highly multicollinear dataset and estimating a linear
regression model. We re-use the regression code from Section 2.2 but this time
we create multicollinear data in similar scale.

> ## create 3 variables, two independent, third collinear

> x1 <- rnorm(100)

> x2 <- rnorm(100)

> x3 <- x1 + x2 + rnorm(100, sd=1e-6) # highly correlated w/x1, x2

> X <- cbind(x1, x2, x3)

> y <- X %*% c(1, 1, 1) + rnorm(100)

> m <- maxLik(negSSEA, start=c(x1=0, x2=0, x3=0))

> # negSSEA: negative sum of squared errors

> # with gradient, hessian attribute

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 2 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -92.66917

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

x1 0.7105 NaN NaN NaN

x2 0.3746 NaN NaN NaN

x3 1.5839 NaN NaN NaN

--------------------------------------------

As one can see, the model converges but the standard errors are missing (because
Hessian is not negative de�nite).

In such case we may learn more about the problem by testing the condition
numbers κ of either the design matrix X or of the Hessian matrix. It is instructive
to test not just the whole matrix, but to do it column-by-column, and see where
the number suddenly jumps. This hints which variable does not play nicely with
the rest of data. condiNumber provides such functionality. First, we test the
condition number of the design matrix:

> condiNumber(X)

x1 1

x2 1.353197

x3 5740575

We can see that when only including x1 and x2 into the design, the condition
number is 1.35, far from any singularity-related problems. However, adding x3

to the matrix causes κ to jump to over 5 millions. This suggests that x3 is
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highly collinear with x1 and x2. In this example the problem is obvious as
this is how we created x3, in real applications one often needs further analysis.
For instance, the problem may be in categorical values that contain too few
observations or complex �xed e�ects that turn out to be perfectly multicollinear.
A good suggestion is to estimate a linear regression model where one explains
the o�ending variable using all the previous variables. In this example we might
estimate lm(x3 ~ x1 + x2) and see which variables help to explain x3 perfectly.

Sometimes the design matrix is �ne but the problem arises because data
and model do not match. In that case it may be more informative to test
condition number of Hessian matrix instead. The example below creates a
linearly separated set of observations and estimates this with logistic regression.
As a refresher, the log-likelihood of logistic regression is

ℓ(β) =
∑

i:yi=1

log Λ(x
T

iβ) +
∑

i:yi=0

log Λ(−x
T

iβ) (10)

where Λ(x) = 1/(1 + exp(−x)) is the logistic cumulative distribution function.
We implement it using R function plogis

> x1 <- rnorm(100)

> x2 <- rnorm(100)

> x3 <- rnorm(100)

> X <- cbind(x1, x2, x3)

> y <- X %*% c(1, 1, 1) > 0

> # y values 1/0 linearly separated

> loglik <- function(beta) {

+ link <- X %*% beta

+ sum(ifelse(y > 0, plogis(link, log=TRUE),

+ plogis(-link, log=TRUE)))

+ }

> m <- maxLik(loglik, start=c(x1=0, x2=0, x3=0))

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 10 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -8.15399e-42

3 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

x1 6.473e+03 2.136e+20 0 1

x2 6.504e+03 NaN NaN NaN

x3 6.269e+03 2.082e+21 0 1

--------------------------------------------

Not surprisingly, all coe�cients tend to in�nity and inference is problematic. In
this case the design matrix does not show any issues:

> condiNumber(X)
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x1 1

x2 1.14411

x3 1.229549

But the Hessian reveals that including x3 in the model is still problematic:

> condiNumber(hessian(m))

x1 1

x2 4.768136

x3 27.53471

Now the problem is not multicollinearity but the fact that x3 makes the data
linearly separable. In such cases we may want to adjust our model or estimation
strategy.

3.4 Fixed parameters and constrained optimization

maxLik supports three types of constrains. The simplest case just keeps certain
parameters' values �xed. The other two, general linear equality and inequality
constraints are somewhat more complex.

Occasionally we want to treat one of the model parameters as constant.
This can be achieved in a very simple manner, just through the argument
fixed. It must be an index vector, either numeric, such as c(2,4), logical as
c(FALSE, TRUE, FALSE, TRUE), or character as c("beta2", "beta4") given
start is a named vector. We revisit the �rst example of this vignette and es-
timate the normal distribution parameters again. However, this time we �x
σ = 1:

> x <- rnorm(100)

> loglik <- function(theta) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ sum(dnorm(x, mean=mu, sd=sigma, log=TRUE))

+ }

> m <- maxLik(loglik, start=c(mu=1, sigma=1),

+ fixed="sigma")

> # fix the component named 'sigma'

> summary(m)

--------------------------------------------

Maximum Likelihood estimation

Newton-Raphson maximisation, 2 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -140.4475

1 free parameters

Estimates:

Estimate Std. error t value Pr(> t)

mu -0.11337 0.09999 -1.134 0.257

sigma 1.00000 0.00000 NA NA

--------------------------------------------
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The result has σ exactly equal to 1, it's standard error 0, and t value unde-
�ned. The �xed components are ignored when computing gradients and Hes-
sian in the optimizer, essentially reducing the problem from 2-dimensional to
1-dimensional. Hence the inference for µ is still correct.

Next, we demonstrate equality constraints. We take the two-dimensional
function we used in Section 3.2 and add constraints x+ y = 1. The constraint
must be described in matrix form Aθ+B = 0 where θ is the parameter vector
and matrix A and vector B describe the constraints. In this case we can write(

1 1
)
·
(
x
y

)
+
(
−1

)
= 0, (11)

i.e. A = (1 1) and B = −1. These values must be supplied to the optimizer
argument constraints. This is a list with components names eqA and eqB for
A and B accordingly. We do not demonstrate this with a likelihood example as
no corrections to the Hessian matrix is done and hence the standard errors are
incorrect. But if you are not interested in likelihood-based inference, it works
well:

> f <- function(theta) {

+ x <- theta[1]

+ y <- theta[2]

+ exp(-x^2 - y^2)

+ # optimum at (0, 0)

+ }

> A <- matrix(c(1, 1), ncol=2)

> B <- -1

> m <- maxNR(f, start=c(1,1),

+ constraints=list(eqA=A, eqB=B))

> summary(m)

--------------------------------------------

Newton-Raphson maximisation

Number of iterations: 1

Return code: 1

gradient close to zero (gradtol)

Function value: 0.6065399

Estimates:

estimate gradient

[1,] 0.4999848 -0.6065307

[2,] 0.4999848 -0.6065307

Constrained optimization based on SUMT

Return code: 1

penalty close to zero

5 outer iterations, barrier value 9.196982e-10

--------------------------------------------

The problem is solved using sequential unconstrained maximization technique
(SUMT). The idea is to add a small penalty for the constraint violation, and to
slowly increase the penalty until violations are prohibitively expensive. As the
example indicates, the solution is extremely close to the constraint line.
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The usage of inequality constraints is fairly similar. We have to code the
inequalities as Aθ +B > 0 where the matrices A and B are de�ned as above.
Let us optimize the function over the region x+ y > 1. In matrix form this will
be (

1 1
)
·
(
x
y

)
+
(
−1

)
> 0. (12)

Supplying the constraints is otherwise similar to the equality constraints, just
the constraints-list components must be called ineqA and ineqB. As maxNR does
not support inequality constraints, we use maxBFGS instead. The corresponding
code is

> A <- matrix(c(1, 1), ncol=2)

> B <- -1

> m <- maxBFGS(f, start=c(1,1),

+ constraints=list(ineqA=A, ineqB=B))

> summary(m)

--------------------------------------------

BFGS maximization

Number of iterations: 42

Return code: 0

successful convergence

Function value: 0.6064307

Estimates:

estimate gradient

[1,] 0.5000824 -0.6065306

[2,] 0.5000824 -0.6065306

Constrained optimization based on constrOptim

1 outer iterations, barrier value -0.0009710671

--------------------------------------------

Not surprisingly, the result is exactly the same as in case of equality constraints,
in this case the optimum is found at the boundary line, the same line what we
speci�ed when demonstrating the equality constraints.

One can supply more than one set of constraints, in that case these all
must be satis�ed at the same time. For instance, let's add another condition,
x − y > 1. This should be coded as another line of A and another component
of B, in matrix form the constraint is now(

1 1
1 −1

)
·
(
x
y

)
+

(
−1
−1

)
>

(
0
0

)
(13)

where �>� must be understood as element-wise operation. We also have to
ensure the initial value satis�es the constraint, so we choose θ0 = (2, 0). The
code will be accordingly:

> A <- matrix(c(1, 1, 1, -1), ncol=2)

> B <- c(-1, -1)

> m <- maxBFGS(f, start=c(2, 0),

+ constraints=list(ineqA=A, ineqB=B))

> summary(m)
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--------------------------------------------

BFGS maximization

Number of iterations: 56

Return code: 0

successful convergence

Function value: 0.3676795

Estimates:

estimate gradient

[1,] 1.000272 -0.7355588

[2,] 0.000000 0.0000000

Constrained optimization based on constrOptim

1 outer iterations, barrier value -0.00184214

--------------------------------------------

The solution is (1, 0) the closest point to the origin where both constraints are
satis�ed.

This example concludes the maxLik usage introduction. For more informa-
tion, consult the fairly extensive documentation, and the other vignettes.
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